public class WekaAttributeSelector extends BaseAttributeSelector
Usage: [-eval <eval method> [<eval options...>]] [-search <search method> [<search options...>]]
Modifier and Type | Field and Description |
---|---|
protected weka.attributeSelection.ASEvaluation |
Evaluator
Weka class that is used to rank subsets of attributes
|
protected weka.attributeSelection.ASSearch |
Searcher
Weka class used to populate a list of attributes
|
trained
Constructor and Description |
---|
WekaAttributeSelector()
Generates a WekaAttributeSelector with default methods
|
Modifier and Type | Method and Description |
---|---|
WekaAttributeSelector |
clone() |
protected static weka.attributeSelection.ASEvaluation |
getASEvaluator(java.lang.String Name,
java.lang.String[] Options)
Generates a Weka ASEvaluator object, given name and options
|
protected static weka.attributeSelection.ASSearch |
getASSearch(java.lang.String Name,
java.lang.String[] Options)
Generates a Weka ASSearch object, given names and options
|
java.lang.String |
printDescription(boolean htmlFormat)
Print full name of object, and a simple description of the options.
|
java.lang.String |
printUsage()
Print out required format for options.
|
void |
setEvaluator(java.lang.String Name,
java.lang.String[] Options)
Set the method used to evaluate subsets of entries.
|
void |
setOptions(java.util.List<java.lang.Object> OptionsObj)
Set any options for this object.
|
void |
setSearcher(java.lang.String Name,
java.lang.String[] Options)
Set the method used to search for optimal subsets.
|
protected java.util.List<java.lang.Integer> |
train_protected(Dataset data)
Operation that actually does the work for training.
|
about, applyAttributeSelection, getSelectionNames, getSelections, isTrained, printCommand, printSelections, run, runCommand, train
protected weka.attributeSelection.ASSearch Searcher
protected weka.attributeSelection.ASEvaluation Evaluator
public WekaAttributeSelector()
public WekaAttributeSelector clone()
clone
in class BaseAttributeSelector
public void setOptions(java.util.List<java.lang.Object> OptionsObj) throws java.lang.Exception
Options
OptionsObj
- Array of options as Objects - can be null
java.lang.Exception
- if problem with inputspublic java.lang.String printUsage()
Options
public void setEvaluator(java.lang.String Name, java.lang.String[] Options)
Name
- Name of ASEvaluator classOptions
- Any options for that classpublic void setSearcher(java.lang.String Name, java.lang.String[] Options)
Name
- Name of ASSearch classOptions
- Any options for that classprotected static weka.attributeSelection.ASSearch getASSearch(java.lang.String Name, java.lang.String[] Options)
Name
- Name of ASSearch (fully qualified)Options
- Any options (can be null)protected static weka.attributeSelection.ASEvaluation getASEvaluator(java.lang.String Name, java.lang.String[] Options)
Name
- Name of ASEvaluator (fully qualified)Options
- Any options (can be null)protected java.util.List<java.lang.Integer> train_protected(Dataset data)
BaseAttributeSelector
train_protected
in class BaseAttributeSelector
data
- Dataset used to train selectorpublic java.lang.String printDescription(boolean htmlFormat)
Printable
Example: For a model training a separate WekaRegression for intermetallics
magpie.models.regression.SplitRegression
printDescription
in interface Printable
printDescription
in class BaseAttributeSelector
htmlFormat
- Whether format for output to an HTML page
(e.g., <div> to create indentation) or for printing to screen.#printModel()