public class WekaAttributeSelector extends BaseAttributeSelector
Usage: [-eval <eval method> [<eval options...>]] [-search <search method> [<search options...>]]
| Modifier and Type | Field and Description |
|---|---|
protected weka.attributeSelection.ASEvaluation |
Evaluator
Weka class that is used to rank subsets of attributes
|
protected weka.attributeSelection.ASSearch |
Searcher
Weka class used to populate a list of attributes
|
trained| Constructor and Description |
|---|
WekaAttributeSelector()
Generates a WekaAttributeSelector with default methods
|
| Modifier and Type | Method and Description |
|---|---|
WekaAttributeSelector |
clone() |
protected static weka.attributeSelection.ASEvaluation |
getASEvaluator(java.lang.String Name,
java.lang.String[] Options)
Generates a Weka ASEvaluator object, given name and options
|
protected static weka.attributeSelection.ASSearch |
getASSearch(java.lang.String Name,
java.lang.String[] Options)
Generates a Weka ASSearch object, given names and options
|
java.lang.String |
printDescription(boolean htmlFormat)
Print full name of object, and a simple description of the options.
|
java.lang.String |
printUsage()
Print out required format for options.
|
void |
setEvaluator(java.lang.String Name,
java.lang.String[] Options)
Set the method used to evaluate subsets of entries.
|
void |
setOptions(java.util.List<java.lang.Object> OptionsObj)
Set any options for this object.
|
void |
setSearcher(java.lang.String Name,
java.lang.String[] Options)
Set the method used to search for optimal subsets.
|
protected java.util.List<java.lang.Integer> |
train_protected(Dataset data)
Operation that actually does the work for training.
|
about, applyAttributeSelection, getSelectionNames, getSelections, isTrained, printCommand, printSelections, run, runCommand, trainprotected weka.attributeSelection.ASSearch Searcher
protected weka.attributeSelection.ASEvaluation Evaluator
public WekaAttributeSelector()
public WekaAttributeSelector clone()
clone in class BaseAttributeSelectorpublic void setOptions(java.util.List<java.lang.Object> OptionsObj)
throws java.lang.Exception
OptionsOptionsObj - Array of options as Objects - can be nulljava.lang.Exception - if problem with inputspublic java.lang.String printUsage()
Optionspublic void setEvaluator(java.lang.String Name,
java.lang.String[] Options)
Name - Name of ASEvaluator classOptions - Any options for that classpublic void setSearcher(java.lang.String Name,
java.lang.String[] Options)
Name - Name of ASSearch classOptions - Any options for that classprotected static weka.attributeSelection.ASSearch getASSearch(java.lang.String Name,
java.lang.String[] Options)
Name - Name of ASSearch (fully qualified)Options - Any options (can be null)protected static weka.attributeSelection.ASEvaluation getASEvaluator(java.lang.String Name,
java.lang.String[] Options)
Name - Name of ASEvaluator (fully qualified)Options - Any options (can be null)protected java.util.List<java.lang.Integer> train_protected(Dataset data)
BaseAttributeSelectortrain_protected in class BaseAttributeSelectordata - Dataset used to train selectorpublic java.lang.String printDescription(boolean htmlFormat)
PrintableExample: For a model training a separate WekaRegression for intermetallics
magpie.models.regression.SplitRegression
printDescription in interface PrintableprintDescription in class BaseAttributeSelectorhtmlFormat - Whether format for output to an HTML page
(e.g., <div> to create indentation) or for printing to screen.#printModel()