public class SplitClassifier extends SplitModel implements AbstractClassifier
How to Use this Class
Use this class in the same way as you would use any SplitModel.
Usage: *No options*
| Modifier and Type | Field and Description |
|---|---|
protected java.lang.String[] |
ClassNames
Names of classes this model can distinguish between
|
protected int |
NClasses
Number of classes model can distinguish between
|
protected ClassificationStatistics |
TrainingStatsPtr
Pointer to ClassificationStatistics interface of TrainingStats
|
protected ClassificationStatistics |
ValidationStatsPtr
Pointer to ClassificationStatistics interface of ValidationStates
|
GenericModel, Model, PartitionerAttributeSelector, trained, TrainingStats, validated, ValidationStats| Constructor and Description |
|---|
SplitClassifier()
Create a blank SplitClassifier
|
| Modifier and Type | Method and Description |
|---|---|
SplitClassifier |
clone() |
java.lang.String[] |
getClassNames()
Get names of classes this model distinguishes between.
|
int |
getNClasses() |
void |
run_protected(Dataset Data)
Run a model without checking if stuff is trained (use carefully)
|
void |
setGenericModel(BaseModel x)
Set the model template
|
void |
setModel(int index,
BaseModel x)
Set a specific submodel.
|
void |
setOptions(java.util.List Options)
Set any options for this object.
|
protected void |
train_protected(Dataset TrainingData)
Train a model without evaluating performance
|
checkModelCount, getCitations, getGenericModel, getModel, NModels, printCommand, printModel_protected, printModelDescriptionDetails, printUsage, runCommand, setNumberOfModels, setPartitionerabout, crossValidate, crossValidate, crossValidate, done, externallyValidate, getAttributeSelector, getFilter, getTrainTime, getValidationMethod, handleSetCommand, isTrained, isValidated, loadState, printDescription, printModel, resetModel, run, saveCommand, saveState, setAttributeSelector, setComponent, setFilter, train, trainprotected ClassificationStatistics TrainingStatsPtr
protected ClassificationStatistics ValidationStatsPtr
protected int NClasses
protected java.lang.String[] ClassNames
public void setOptions(java.util.List Options)
throws java.lang.Exception
OptionssetOptions in interface OptionssetOptions in class SplitModelOptions - Array of options as Objects - can be nulljava.lang.Exception - if problem with inputspublic void setModel(int index,
BaseModel x)
MultiModelAny implementation should not clone the model. This will allow people to construct a model used already-trained models.
setModel in interface MultiModelsetModel in class SplitModelindex - Index of submodel to be setx - Model to be used (creates a clone)public void setGenericModel(BaseModel x)
SplitModelsetGenericModel in interface MultiModelsetGenericModel in class SplitModelx - Template model (will be cloned)public SplitClassifier clone()
clone in class SplitModelpublic int getNClasses()
getNClasses in interface AbstractClassifierpublic java.lang.String[] getClassNames()
AbstractClassifiergetClassNames in interface AbstractClassifierprotected void train_protected(Dataset TrainingData)
BaseModeltrain_protected in class SplitModelTrainingData - Training datapublic void run_protected(Dataset Data)
BaseModelrun_protected in class SplitModelData - Training data