public class SplitClassifier extends SplitModel implements AbstractClassifier
How to Use this Class
Use this class in the same way as you would use any SplitModel.
Usage: *No options*
Modifier and Type | Field and Description |
---|---|
protected java.lang.String[] |
ClassNames
Names of classes this model can distinguish between
|
protected int |
NClasses
Number of classes model can distinguish between
|
protected ClassificationStatistics |
TrainingStatsPtr
Pointer to ClassificationStatistics interface of TrainingStats
|
protected ClassificationStatistics |
ValidationStatsPtr
Pointer to ClassificationStatistics interface of ValidationStates
|
GenericModel, Model, Partitioner
AttributeSelector, trained, TrainingStats, validated, ValidationStats
Constructor and Description |
---|
SplitClassifier()
Create a blank SplitClassifier
|
Modifier and Type | Method and Description |
---|---|
SplitClassifier |
clone() |
java.lang.String[] |
getClassNames()
Get names of classes this model distinguishes between.
|
int |
getNClasses() |
void |
run_protected(Dataset Data)
Run a model without checking if stuff is trained (use carefully)
|
void |
setGenericModel(BaseModel x)
Set the model template
|
void |
setModel(int index,
BaseModel x)
Set a specific submodel.
|
void |
setOptions(java.util.List Options)
Set any options for this object.
|
protected void |
train_protected(Dataset TrainingData)
Train a model without evaluating performance
|
checkModelCount, getCitations, getGenericModel, getModel, NModels, printCommand, printModel_protected, printModelDescriptionDetails, printUsage, runCommand, setNumberOfModels, setPartitioner
about, crossValidate, crossValidate, crossValidate, done, externallyValidate, getAttributeSelector, getFilter, getTrainTime, getValidationMethod, handleSetCommand, isTrained, isValidated, loadState, printDescription, printModel, resetModel, run, saveCommand, saveState, setAttributeSelector, setComponent, setFilter, train, train
protected ClassificationStatistics TrainingStatsPtr
protected ClassificationStatistics ValidationStatsPtr
protected int NClasses
protected java.lang.String[] ClassNames
public void setOptions(java.util.List Options) throws java.lang.Exception
Options
setOptions
in interface Options
setOptions
in class SplitModel
Options
- Array of options as Objects - can be null
java.lang.Exception
- if problem with inputspublic void setModel(int index, BaseModel x)
MultiModel
Any implementation should not clone the model. This will allow people to construct a model used already-trained models.
setModel
in interface MultiModel
setModel
in class SplitModel
index
- Index of submodel to be setx
- Model to be used (creates a clone)public void setGenericModel(BaseModel x)
SplitModel
setGenericModel
in interface MultiModel
setGenericModel
in class SplitModel
x
- Template model (will be cloned)public SplitClassifier clone()
clone
in class SplitModel
public int getNClasses()
getNClasses
in interface AbstractClassifier
public java.lang.String[] getClassNames()
AbstractClassifier
getClassNames
in interface AbstractClassifier
protected void train_protected(Dataset TrainingData)
BaseModel
train_protected
in class SplitModel
TrainingData
- Training datapublic void run_protected(Dataset Data)
BaseModel
run_protected
in class SplitModel
Data
- Training data