public abstract class AbstractParsedNonlinearRegression extends AbstractNonlinearRegression
AbstractNonlinearRegression-based models which parse the equation
 of interest from text input. 
 
 Use this class by passing a specially-formatted equation to 
 #parseFormula(java.lang.String) .
 
  Usage: <equation>
 
Rules for writing an equation:
#{a:<Attribute Name>}#{<Constant Name>}Example expression with two fitting constants and a single attribute 
  variable : #{a} + #{b} * #{a:NComp}
| Modifier and Type | Field and Description | 
|---|---|
| protected java.lang.String | UserFormulaStores the user-provided formula | 
AttributeSelector, trained, TrainingStats, validated, ValidationStats| Constructor and Description | 
|---|
| AbstractParsedNonlinearRegression() | 
| Modifier and Type | Method and Description | 
|---|---|
| protected void | defineCoefficients()Define the names and, if desired, initial guesses of fitting coefficients. | 
| protected void | defineVariables()Define which attributes are used by the function. | 
| protected abstract java.lang.String | defineVariables(java.lang.String Expression)Reads an expression and stores the names of all variables. | 
| void | parseFormula(java.lang.String formula)Parse formula to use as model. | 
| abstract void | prepareEvaluator(java.lang.String Expression)Define the internal  Evaluatorand parse the user-defined function | 
| protected java.lang.String | printModel_protected()Internal method that handles printing the model as a string. | 
| java.util.List<java.lang.String> | printModelDescriptionDetails(boolean htmlFormat)Print details of the model. | 
| java.lang.String | printUsage()Print out required format for options. | 
| void | setOptions(java.util.List OptionsObj)Set any options for this object. | 
addCoefficient, addCoefficient, addVariable, function, getCoefficientName, getFittedCoefficient, getMaxIter, getNFittingParameters, getVariableName, makeObjectiveFunction, NCoefficients, NVariables, run_protected, runCommand, runNonlinearCommand, setInitialGuess, setMaxIterations, train_protectedclone, doRobustRegression, getRobustRegressionQ, robustTraining, setRobustRegressionQabout, crossValidate, crossValidate, crossValidate, done, externallyValidate, getAttributeSelector, getCitations, getFilter, getTrainTime, getValidationMethod, handleSetCommand, isTrained, isValidated, loadState, printCommand, printDescription, printModel, resetModel, run, saveCommand, saveState, setAttributeSelector, setComponent, setFilter, train, trainprotected void defineCoefficients()
AbstractNonlinearRegressionCoefficients are defined using the AbstractNonlinearRegression.addCoefficient(java.lang.String) function.
 
 In AbstractNonlinearRegression.function(double[], double[]) these names are mapped to the coeff array 
 in the same order you define them.
defineCoefficients in class AbstractNonlinearRegressionprotected abstract java.lang.String defineVariables(java.lang.String Expression)
                                             throws java.lang.Exception
AbstractNonlinearRegressionExpression - Expression to be parsedjava.lang.Exception - If poorly-formed expressionprotected void defineVariables()
AbstractNonlinearRegressionVariables are defined using the AbstractNonlinearRegression.addVariable(java.lang.String) function.     * 
 
In AbstractNonlinearRegression.function(double[], double[]) these names are mapped to the variable array 
 in the same order you define them.
defineVariables in class AbstractNonlinearRegressionpublic abstract void prepareEvaluator(java.lang.String Expression)
                               throws java.lang.Exception
Evaluator and parse the user-defined functionExpression - User-defined functionjava.lang.Exception - If the formula is illegiblepublic void setOptions(java.util.List OptionsObj)
                throws java.lang.Exception
OptionssetOptions in interface OptionssetOptions in class AbstractNonlinearRegressionOptionsObj - Array of options as Objects - can be nulljava.lang.Exception - if problem with inputspublic void parseFormula(java.lang.String formula)
                  throws java.lang.Exception
formula - Formula to be parsedjava.lang.ExceptionAbstractParsedNonlinearRegressionpublic java.lang.String printUsage()
OptionsprintUsage in interface OptionsprintUsage in class AbstractNonlinearRegressionpublic java.util.List<java.lang.String> printModelDescriptionDetails(boolean htmlFormat)
BaseModelBaseModel.printDescription(boolean).
 
 Implementation note: No not add indentation for details. That is handled
 by BaseModel.printDescription(boolean). You should also call the super 
 operation to get the Normalizer and Attribute selector settings
printModelDescriptionDetails in class BaseModelhtmlFormat - Whether to use HTML formatprotected java.lang.String printModel_protected()
BaseModelprintModel_protected in class BaseModel