public class ClassificationRegression extends BaseRegression
BaseEntryRanker) and the treshold on which
to split the data.
Regression is performed by predicting that an entry 100% probability of being
past the threshold to have a class variable equal to that of the training entry
farthest past the threshold, 0% probability being equivalent to the entry farthest
before the threshold, and all others linearly interpolated between those two.
Usage: $<classifier> <threshold> <objective function> [<o.f. options...>]
BaseEntryRanker used to rank the entries based on their class variable.
AttributeSelector, trained, TrainingStats, validated, ValidationStats| Constructor and Description |
|---|
ClassificationRegression()
Create a instances of this model that uses ZeroR.
|
| Modifier and Type | Method and Description |
|---|---|
ClassificationRegression |
clone() |
int |
getNFittingParameters()
Number of fitting parameters in a model.
|
protected java.lang.String |
printModel_protected()
Internal method that handles printing the model as a string.
|
java.util.List<java.lang.String> |
printModelDescriptionDetails(boolean htmlFormat)
Print details of the model.
|
java.lang.String |
printUsage()
Print out required format for options.
|
void |
run_protected(Dataset TrainData)
Run a model without checking if stuff is trained (use carefully)
|
void |
setClassifier(BaseModel Clfr)
Classifier behind this regression algorithm
|
void |
setObjectiveFunction(BaseEntryRanker ObjFunction)
Define the objective function used to order entries
|
void |
setOptions(java.util.List<java.lang.Object> Options)
Set any options for this object.
|
void |
setThreshold(double Threshold)
Define threshold of objective function on which to split entries.
|
protected void |
train_protected(Dataset TrainData)
Train a model without evaluating performance
|
doRobustRegression, getRobustRegressionQ, robustTraining, runCommand, setRobustRegressionQabout, crossValidate, crossValidate, crossValidate, done, externallyValidate, getAttributeSelector, getCitations, getFilter, getTrainTime, getValidationMethod, handleSetCommand, isTrained, isValidated, loadState, printCommand, printDescription, printModel, resetModel, run, saveCommand, saveState, setAttributeSelector, setComponent, setFilter, train, trainpublic ClassificationRegression()
throws java.lang.Exception
java.lang.Exceptionpublic ClassificationRegression clone()
clone in class BaseRegressionpublic void setOptions(java.util.List<java.lang.Object> Options)
throws java.lang.Exception
OptionsOptions - Array of options as Objects - can be nulljava.lang.Exception - if problem with inputspublic java.lang.String printUsage()
Optionspublic void setObjectiveFunction(BaseEntryRanker ObjFunction)
ObjFunction - Desired objective functionpublic void setClassifier(BaseModel Clfr) throws java.lang.Exception
Clfr - Untrained regression modeljava.lang.Exceptionpublic void setThreshold(double Threshold)
Threshold - protected void train_protected(Dataset TrainData)
BaseModeltrain_protected in class BaseModelTrainData - Training datapublic void run_protected(Dataset TrainData)
BaseModelrun_protected in class BaseModelTrainData - Training dataprotected java.lang.String printModel_protected()
BaseModelprintModel_protected in class BaseModelpublic java.util.List<java.lang.String> printModelDescriptionDetails(boolean htmlFormat)
BaseModelBaseModel.printDescription(boolean).
Implementation note: No not add indentation for details. That is handled
by BaseModel.printDescription(boolean). You should also call the super
operation to get the Normalizer and Attribute selector settings
printModelDescriptionDetails in class BaseModelhtmlFormat - Whether to use HTML formatpublic int getNFittingParameters()
AbstractRegressionModel