public class ClassificationRegression extends BaseRegression
BaseEntryRanker
) and the treshold on which
to split the data.
Regression is performed by predicting that an entry 100% probability of being
past the threshold to have a class variable equal to that of the training entry
farthest past the threshold, 0% probability being equivalent to the entry farthest
before the threshold, and all others linearly interpolated between those two.
Usage: $<classifier> <threshold> <objective function> [<o.f. options...>]
BaseEntryRanker
used to rank the entries based on their class variable.
AttributeSelector, trained, TrainingStats, validated, ValidationStats
Constructor and Description |
---|
ClassificationRegression()
Create a instances of this model that uses ZeroR.
|
Modifier and Type | Method and Description |
---|---|
ClassificationRegression |
clone() |
int |
getNFittingParameters()
Number of fitting parameters in a model.
|
protected java.lang.String |
printModel_protected()
Internal method that handles printing the model as a string.
|
java.util.List<java.lang.String> |
printModelDescriptionDetails(boolean htmlFormat)
Print details of the model.
|
java.lang.String |
printUsage()
Print out required format for options.
|
void |
run_protected(Dataset TrainData)
Run a model without checking if stuff is trained (use carefully)
|
void |
setClassifier(BaseModel Clfr)
Classifier behind this regression algorithm
|
void |
setObjectiveFunction(BaseEntryRanker ObjFunction)
Define the objective function used to order entries
|
void |
setOptions(java.util.List<java.lang.Object> Options)
Set any options for this object.
|
void |
setThreshold(double Threshold)
Define threshold of objective function on which to split entries.
|
protected void |
train_protected(Dataset TrainData)
Train a model without evaluating performance
|
doRobustRegression, getRobustRegressionQ, robustTraining, runCommand, setRobustRegressionQ
about, crossValidate, crossValidate, crossValidate, done, externallyValidate, getAttributeSelector, getCitations, getFilter, getTrainTime, getValidationMethod, handleSetCommand, isTrained, isValidated, loadState, printCommand, printDescription, printModel, resetModel, run, saveCommand, saveState, setAttributeSelector, setComponent, setFilter, train, train
public ClassificationRegression() throws java.lang.Exception
java.lang.Exception
public ClassificationRegression clone()
clone
in class BaseRegression
public void setOptions(java.util.List<java.lang.Object> Options) throws java.lang.Exception
Options
Options
- Array of options as Objects - can be null
java.lang.Exception
- if problem with inputspublic java.lang.String printUsage()
Options
public void setObjectiveFunction(BaseEntryRanker ObjFunction)
ObjFunction
- Desired objective functionpublic void setClassifier(BaseModel Clfr) throws java.lang.Exception
Clfr
- Untrained regression modeljava.lang.Exception
public void setThreshold(double Threshold)
Threshold
- protected void train_protected(Dataset TrainData)
BaseModel
train_protected
in class BaseModel
TrainData
- Training datapublic void run_protected(Dataset TrainData)
BaseModel
run_protected
in class BaseModel
TrainData
- Training dataprotected java.lang.String printModel_protected()
BaseModel
printModel_protected
in class BaseModel
public java.util.List<java.lang.String> printModelDescriptionDetails(boolean htmlFormat)
BaseModel
BaseModel.printDescription(boolean)
.
Implementation note: No not add indentation for details. That is handled
by BaseModel.printDescription(boolean)
. You should also call the super
operation to get the Normalizer and Attribute selector settings
printModelDescriptionDetails
in class BaseModel
htmlFormat
- Whether to use HTML formatpublic int getNFittingParameters()
AbstractRegressionModel