public class SplitRegression extends SplitModel implements AbstractRegressionModel
BaseRegression.
Usage: No options to set.
Implemented Commands:
robust <Q> - Define False Positive Rate used for robust regression. See Motulsky and Brown
GenericModel, Model, PartitionerAttributeSelector, trained, TrainingStats, validated, ValidationStats| Constructor and Description |
|---|
SplitRegression()
Create a blank split regression model
|
| Modifier and Type | Method and Description |
|---|---|
SplitRegression |
clone() |
boolean |
doRobustRegression()
Whether robust regression is desired.
|
int |
getNFittingParameters()
Number of fitting parameters in a model.
|
double |
getRobustRegressionQ()
Get desired False Discovery Rate
|
void |
robustTraining(Dataset TrainData)
Robustly train a model.
|
java.lang.Object |
runCommand(java.util.List<java.lang.Object> Command)
Process some command described by a list of Objects.
|
void |
setGenericModel(BaseModel x)
Set the model template
|
void |
setModel(int index,
BaseModel x)
Set a specific submodel.
|
void |
setRobustRegressionQ(double Q)
Set the desired False Discovery Rate for outlier detection.
|
checkModelCount, getCitations, getGenericModel, getModel, NModels, printCommand, printModel_protected, printModelDescriptionDetails, printUsage, run_protected, setNumberOfModels, setOptions, setPartitioner, train_protectedabout, crossValidate, crossValidate, crossValidate, done, externallyValidate, getAttributeSelector, getFilter, getTrainTime, getValidationMethod, handleSetCommand, isTrained, isValidated, loadState, printDescription, printModel, resetModel, run, saveCommand, saveState, setAttributeSelector, setComponent, setFilter, train, trainpublic SplitRegression clone()
clone in class SplitModelpublic void setModel(int index,
BaseModel x)
MultiModelAny implementation should not clone the model. This will allow people to construct a model used already-trained models.
setModel in interface MultiModelsetModel in class SplitModelindex - Index of submodel to be setx - Model to be used (creates a clone)public void setGenericModel(BaseModel x)
SplitModelsetGenericModel in interface MultiModelsetGenericModel in class SplitModelx - Template model (will be cloned)public void robustTraining(Dataset TrainData)
AbstractRegressionModelBaseModel.train(magpie.data.Dataset).
I recommend that you use methods outlined in a paper by Motulsky and Brown.
.robustTraining in interface AbstractRegressionModelTrainData - Training datapublic void setRobustRegressionQ(double Q)
AbstractRegressionModelSee paper by Benjamini and Hochberg
setRobustRegressionQ in interface AbstractRegressionModelQ - Desired FDRpublic double getRobustRegressionQ()
AbstractRegressionModelgetRobustRegressionQ in interface AbstractRegressionModelpublic boolean doRobustRegression()
AbstractRegressionModelgetRobustRegressionQ > 0doRobustRegression in interface AbstractRegressionModelpublic int getNFittingParameters()
AbstractRegressionModelgetNFittingParameters in interface AbstractRegressionModelpublic java.lang.Object runCommand(java.util.List<java.lang.Object> Command)
throws java.lang.Exception
CommandablerunCommand in interface CommandablerunCommand in class SplitModelCommand - Command as a list of objectsjava.lang.Exception - If something goes wrong