public class SplitRegression extends SplitModel implements AbstractRegressionModel
BaseRegression
.
Usage: No options to set.
Implemented Commands:
robust <Q> - Define False Positive Rate used for robust regression. See Motulsky and Brown
GenericModel, Model, Partitioner
AttributeSelector, trained, TrainingStats, validated, ValidationStats
Constructor and Description |
---|
SplitRegression()
Create a blank split regression model
|
Modifier and Type | Method and Description |
---|---|
SplitRegression |
clone() |
boolean |
doRobustRegression()
Whether robust regression is desired.
|
int |
getNFittingParameters()
Number of fitting parameters in a model.
|
double |
getRobustRegressionQ()
Get desired False Discovery Rate
|
void |
robustTraining(Dataset TrainData)
Robustly train a model.
|
java.lang.Object |
runCommand(java.util.List<java.lang.Object> Command)
Process some command described by a list of Objects.
|
void |
setGenericModel(BaseModel x)
Set the model template
|
void |
setModel(int index,
BaseModel x)
Set a specific submodel.
|
void |
setRobustRegressionQ(double Q)
Set the desired False Discovery Rate for outlier detection.
|
checkModelCount, getCitations, getGenericModel, getModel, NModels, printCommand, printModel_protected, printModelDescriptionDetails, printUsage, run_protected, setNumberOfModels, setOptions, setPartitioner, train_protected
about, crossValidate, crossValidate, crossValidate, done, externallyValidate, getAttributeSelector, getFilter, getTrainTime, getValidationMethod, handleSetCommand, isTrained, isValidated, loadState, printDescription, printModel, resetModel, run, saveCommand, saveState, setAttributeSelector, setComponent, setFilter, train, train
public SplitRegression clone()
clone
in class SplitModel
public void setModel(int index, BaseModel x)
MultiModel
Any implementation should not clone the model. This will allow people to construct a model used already-trained models.
setModel
in interface MultiModel
setModel
in class SplitModel
index
- Index of submodel to be setx
- Model to be used (creates a clone)public void setGenericModel(BaseModel x)
SplitModel
setGenericModel
in interface MultiModel
setGenericModel
in class SplitModel
x
- Template model (will be cloned)public void robustTraining(Dataset TrainData)
AbstractRegressionModel
BaseModel.train(magpie.data.Dataset)
.
I recommend that you use methods outlined in a paper by Motulsky and Brown.
.robustTraining
in interface AbstractRegressionModel
TrainData
- Training datapublic void setRobustRegressionQ(double Q)
AbstractRegressionModel
See paper by Benjamini and Hochberg
setRobustRegressionQ
in interface AbstractRegressionModel
Q
- Desired FDRpublic double getRobustRegressionQ()
AbstractRegressionModel
getRobustRegressionQ
in interface AbstractRegressionModel
public boolean doRobustRegression()
AbstractRegressionModel
getRobustRegressionQ > 0
doRobustRegression
in interface AbstractRegressionModel
public int getNFittingParameters()
AbstractRegressionModel
getNFittingParameters
in interface AbstractRegressionModel
public java.lang.Object runCommand(java.util.List<java.lang.Object> Command) throws java.lang.Exception
Commandable
runCommand
in interface Commandable
runCommand
in class SplitModel
Command
- Command as a list of objectsjava.lang.Exception
- If something goes wrong