public abstract class StructureKRRBasedRegression extends BaseRegression
This implementation currently uses CholeskyDecomposition to perform to solve the ridge regression.
How to Extend this Class
computeSimiliarity(Object, Object)
to compute the similarity between two structures based on their representations.
Note: This operation should include your kernel function.
Implemented Commands
match $<dataset> <n>: Find the entries in the training set
that are closest to those in a user-provided dataset
dataset: Dataset to be matched
n: Number to print
Will print out the n entries in the dataset that are closest
to the entries in the dataset.
AttributeSelector, trained, TrainingStats, validated, ValidationStats| Constructor and Description |
|---|
StructureKRRBasedRegression() |
| Modifier and Type | Method and Description |
|---|---|
StructureKRRBasedRegression |
clone() |
abstract java.lang.Object |
computeRepresentation(vassal.data.Cell strc)
Given a structure, compute representation of the structure.
|
protected abstract double |
computeSimiliarity(java.lang.Object strc1,
java.lang.Object strc2)
Compute similarity between two crystal structures.
|
java.util.List<java.lang.String> |
findClosestEntries(CrystalStructureEntry entry,
int num)
Find the name of the training entries that are closest in similarity to this entry.
|
int |
getNFittingParameters()
Number of fitting parameters in a model.
|
protected java.lang.String |
printModel_protected()
Internal method that handles printing the model as a string.
|
void |
run_protected(Dataset TrainData)
Run a model without checking if stuff is trained (use carefully)
|
java.lang.Object |
runCommand(java.util.List<java.lang.Object> Command)
Process some command described by a list of Objects.
|
void |
setLambda(double lambda)
Set the ridge regularization parameter.
|
protected void |
train_protected(Dataset TrainData)
Train a model without evaluating performance
|
doRobustRegression, getRobustRegressionQ, robustTraining, setRobustRegressionQabout, crossValidate, crossValidate, crossValidate, done, externallyValidate, getAttributeSelector, getCitations, getFilter, getTrainTime, getValidationMethod, handleSetCommand, isTrained, isValidated, loadState, printCommand, printDescription, printModel, printModelDescriptionDetails, resetModel, run, saveCommand, saveState, setAttributeSelector, setComponent, setFilter, train, trainequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitprintUsage, setOptionspublic StructureKRRBasedRegression clone()
clone in class BaseRegressionpublic void setLambda(double lambda)
lambda - protected void train_protected(Dataset TrainData)
BaseModeltrain_protected in class BaseModelTrainData - Training datapublic void run_protected(Dataset TrainData)
BaseModelrun_protected in class BaseModelTrainData - Training dataprotected abstract double computeSimiliarity(java.lang.Object strc1,
java.lang.Object strc2)
strc1 - Representation of structure #1strc2 - Representation of structure #2public abstract java.lang.Object computeRepresentation(vassal.data.Cell strc)
strc - Structurepublic java.util.List<java.lang.String> findClosestEntries(CrystalStructureEntry entry, int num)
entry - Entry to be matchednum - Number to listprotected java.lang.String printModel_protected()
BaseModelprintModel_protected in class BaseModelpublic int getNFittingParameters()
AbstractRegressionModelpublic java.lang.Object runCommand(java.util.List<java.lang.Object> Command)
throws java.lang.Exception
CommandablerunCommand in interface CommandablerunCommand in class BaseRegressionCommand - Command as a list of objectsjava.lang.Exception - If something goes wrong