public class SimpleLinearModelExample extends AbstractNonlinearRegression
AbstractNonlinearRegression Class. Fits a regression model to:
Class = a + b * mean_GSvolume_pa
AttributeSelector, trained, TrainingStats, validated, ValidationStats| Constructor and Description |
|---|
SimpleLinearModelExample() |
| Modifier and Type | Method and Description |
|---|---|
protected void |
defineCoefficients()
Define the names and, if desired, initial guesses of fitting coefficients.
|
protected void |
defineVariables()
Define which attributes are used by the function.
|
protected double |
function(double[] variables,
double[] coeff)
Function defined by the user.
|
protected java.lang.String |
printModel_protected()
Internal method that handles printing the model as a string.
|
java.util.List<java.lang.String> |
printModelDescriptionDetails(boolean htmlFormat)
Print details of the model.
|
addCoefficient, addCoefficient, addVariable, getCoefficientName, getFittedCoefficient, getMaxIter, getNFittingParameters, getVariableName, makeObjectiveFunction, NCoefficients, NVariables, printUsage, run_protected, runCommand, runNonlinearCommand, setInitialGuess, setMaxIterations, setOptions, train_protectedclone, doRobustRegression, getRobustRegressionQ, robustTraining, setRobustRegressionQabout, crossValidate, crossValidate, crossValidate, done, externallyValidate, getAttributeSelector, getCitations, getFilter, getTrainTime, getValidationMethod, handleSetCommand, isTrained, isValidated, loadState, printCommand, printDescription, printModel, resetModel, run, saveCommand, saveState, setAttributeSelector, setComponent, setFilter, train, trainprotected void defineVariables()
AbstractNonlinearRegressionVariables are defined using the AbstractNonlinearRegression.addVariable(java.lang.String) function. *
In AbstractNonlinearRegression.function(double[], double[]) these names are mapped to the variable array
in the same order you define them.
defineVariables in class AbstractNonlinearRegressionprotected void defineCoefficients()
AbstractNonlinearRegressionCoefficients are defined using the AbstractNonlinearRegression.addCoefficient(java.lang.String) function.
In AbstractNonlinearRegression.function(double[], double[]) these names are mapped to the coeff array
in the same order you define them.
defineCoefficients in class AbstractNonlinearRegressionprotected double function(double[] variables,
double[] coeff)
AbstractNonlinearRegressionfunction in class AbstractNonlinearRegressionvariables - Values of attributes used as independent variablescoeff - Coefficients of equationprotected java.lang.String printModel_protected()
BaseModelprintModel_protected in class BaseModelpublic java.util.List<java.lang.String> printModelDescriptionDetails(boolean htmlFormat)
BaseModelBaseModel.printDescription(boolean).
Implementation note: No not add indentation for details. That is handled
by BaseModel.printDescription(boolean). You should also call the super
operation to get the Normalizer and Attribute selector settings
printModelDescriptionDetails in class BaseModelhtmlFormat - Whether to use HTML format