public abstract class BaseDatasetFilter extends java.lang.Object implements java.io.Serializable, Options
Implementations must fulfill the following operations:
label(magpie.data.Dataset) Generate a array defining if each entry passes the filtertrain(magpie.data.Dataset) If needed, train before filteringOptions.setOptions(java.util.List<java.lang.Object>) Set options to fit the user's desires| Constructor and Description | 
|---|
| BaseDatasetFilter() | 
| Modifier and Type | Method and Description | 
|---|---|
| void | filter(Dataset D)Filters entries out of dataset | 
| abstract boolean[] | label(Dataset D)Given a dataset, determine which entries passes the filter. | 
| protected boolean[] | parallelLabel(Dataset D)Label entries in parallel. | 
| protected int | parallelMinimum()Minimum number of entries to label in parallel. | 
| void | setExclude(boolean Exclude)Define whether entries that pass should be removed, or whether an entry 
 must pass the filter to be kept. | 
| boolean | toExclude() | 
| abstract void | train(Dataset TrainingSet)Train a dataset splitter, if necessary | 
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitprintUsage, setOptionspublic void setExclude(boolean Exclude)
Exclude - Whether entries that pass a filter should be removedpublic boolean toExclude()
protected int parallelMinimum()
public abstract boolean[] label(Dataset D)
D - Dataset to be labeledprotected boolean[] parallelLabel(Dataset D)
D - Dataset to be labeledpublic void filter(Dataset D)
D - Dataset to filterpublic abstract void train(Dataset TrainingSet)
TrainingSet - Dataset to use for training