public class PredictionOutlierFilter extends BaseDatasetFilter
Usage: [-q <Q>] [-k <K> [-frac <fraction>]
Constructor and Description |
---|
PredictionOutlierFilter() |
Modifier and Type | Method and Description |
---|---|
boolean[] |
label(Dataset D)
Given a dataset, determine which entries passes the filter.
|
java.lang.String |
printUsage()
Print out required format for options.
|
void |
setK(int K)
Define number of fitting parameters in model.
|
void |
setOptions(java.util.List<java.lang.Object> OptionsObj)
Set any options for this object.
|
void |
setQ(double Q)
Set target False Discovery rate.
|
void |
train(Dataset TrainingSet)
Train a dataset splitter, if necessary
|
filter, parallelLabel, parallelMinimum, setExclude, toExclude
public void setOptions(java.util.List<java.lang.Object> OptionsObj) throws java.lang.Exception
Options
OptionsObj
- Array of options as Objects - can be null
java.lang.Exception
- if problem with inputspublic java.lang.String printUsage()
Options
public void setQ(double Q)
RobustRegressionUtility
.Q
- Target FDRpublic void setK(int K)
RobustRegressionUtility
.K
- Number of fitting parameterspublic boolean[] label(Dataset D)
BaseDatasetFilter
label
in class BaseDatasetFilter
D
- Dataset to be labeledpublic void train(Dataset TrainingSet)
BaseDatasetFilter
train
in class BaseDatasetFilter
TrainingSet
- Dataset to use for training