public abstract class IndependentVariableNormalizer extends BaseDatasetNormalizer
Constructor and Description |
---|
IndependentVariableNormalizer() |
Modifier and Type | Method and Description |
---|---|
protected abstract void |
computeAttributeStatistics(int attributeNumber,
double[] values)
Compute statistics required to perform normalization/restoration.
|
protected abstract void |
computeClassStatistics(double[] values)
Compute statistics regarding the class variable.
|
protected void |
normalizeAttributes(Dataset Data)
Perform the actual normalization on the attributes
|
protected abstract void |
normalizeAttributes(double[] attributes)
Normalize each attribute for an entry
|
protected void |
normalizeClassVariable(Dataset Data)
Perform the actual normalization on the class variable.
|
protected abstract double |
normalizeClassVariable(double value)
Normalize a class variable
|
protected abstract void |
prepareAttributeArrays(int NAttributes)
Prepare arrays that will hold attribute statistics.
|
protected void |
restoreAttributes(Dataset Data)
Perform the actual restoration on the attributes
|
protected abstract void |
restoreAttributes(double[] attributes)
Restore each attribute for an entry
|
protected void |
restoreClassVariable(Dataset Data)
Perform the actual restoration on the class variables (measured and predicted!)
|
protected abstract double |
restoreClassVariable(double value)
Restore a class variable
|
protected void |
trainOnAttributes(Dataset Data)
Perform the actual training work for attributes.
|
protected void |
trainOnMeasuredClass(Dataset Data)
Perform the actual training work for the class variable.
|
about, clone, isTrained, normalize, printCommand, printDescription, restore, runCommand, setToNormalizeAttributes, setToNormalizeClass, test, train, willNormalizeAttributes, willNormalizeClass
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
printUsage, setOptions
protected void trainOnAttributes(Dataset Data)
BaseDatasetNormalizer
trainOnAttributes
in class BaseDatasetNormalizer
Data
- Training setprotected void trainOnMeasuredClass(Dataset Data)
BaseDatasetNormalizer
NOTE: Use the measured class variable to train normalizer.
trainOnMeasuredClass
in class BaseDatasetNormalizer
Data
- Training setprotected abstract void prepareAttributeArrays(int NAttributes)
NAttributes
- protected abstract void computeAttributeStatistics(int attributeNumber, double[] values)
attributeNumber
- Attribute numbervalues
- protected abstract void computeClassStatistics(double[] values)
values
- Measured values of the class variableprotected void normalizeAttributes(Dataset Data)
BaseDatasetNormalizer
normalizeAttributes
in class BaseDatasetNormalizer
Data
- Dataset to be transformedprotected void normalizeClassVariable(Dataset Data)
BaseDatasetNormalizer
normalizeClassVariable
in class BaseDatasetNormalizer
Data
- Dataset to be transformedprotected abstract void normalizeAttributes(double[] attributes)
attributes
- Attributes to be normalizedprotected abstract double normalizeClassVariable(double value)
value
- Value of class variableprotected void restoreAttributes(Dataset Data)
BaseDatasetNormalizer
restoreAttributes
in class BaseDatasetNormalizer
Data
- Dataset to be transformedprotected void restoreClassVariable(Dataset Data)
BaseDatasetNormalizer
restoreClassVariable
in class BaseDatasetNormalizer
Data
- Dataset to be transformedprotected abstract void restoreAttributes(double[] attributes)
attributes
- Normalized attributes to be restoredprotected abstract double restoreClassVariable(double value)
value
- Normalized value of class variable