public class ZScoreNormalizer extends IndependentVariableNormalizer
Usage: *No options*
Constructor and Description |
---|
ZScoreNormalizer() |
Modifier and Type | Method and Description |
---|---|
ZScoreNormalizer |
clone() |
protected void |
computeAttributeStatistics(int attributeNumber,
double[] values)
Compute statistics required to perform normalization/restoration.
|
protected void |
computeClassStatistics(double[] values)
Compute statistics regarding the class variable.
|
protected double |
normalizationFunction(double variable,
double mean,
double stdev)
Compute the normalized value of a variable
|
protected void |
normalizeAttributes(double[] attributes)
Normalize each attribute for an entry
|
protected double |
normalizeClassVariable(double value)
Normalize a class variable
|
protected void |
prepareAttributeArrays(int NAttributes)
Prepare arrays that will hold attribute statistics.
|
java.lang.String |
printUsage()
Print out required format for options.
|
protected double |
restorationFunction(double variable,
double mean,
double stdev)
Compute the restored value a variable
|
protected void |
restoreAttributes(double[] attributes)
Restore each attribute for an entry
|
protected double |
restoreClassVariable(double value)
Restore a class variable
|
void |
setOptions(java.util.List<java.lang.Object> Options)
Set any options for this object.
|
normalizeAttributes, normalizeClassVariable, restoreAttributes, restoreClassVariable, trainOnAttributes, trainOnMeasuredClass
about, isTrained, normalize, printCommand, printDescription, restore, runCommand, setToNormalizeAttributes, setToNormalizeClass, test, train, willNormalizeAttributes, willNormalizeClass
public ZScoreNormalizer clone()
clone
in class BaseDatasetNormalizer
public void setOptions(java.util.List<java.lang.Object> Options) throws java.lang.Exception
Options
Options
- Array of options as Objects - can be null
java.lang.Exception
- if problem with inputspublic java.lang.String printUsage()
Options
protected void prepareAttributeArrays(int NAttributes)
IndependentVariableNormalizer
prepareAttributeArrays
in class IndependentVariableNormalizer
protected void computeAttributeStatistics(int attributeNumber, double[] values)
IndependentVariableNormalizer
computeAttributeStatistics
in class IndependentVariableNormalizer
attributeNumber
- Attribute numberprotected void computeClassStatistics(double[] values)
IndependentVariableNormalizer
computeClassStatistics
in class IndependentVariableNormalizer
values
- Measured values of the class variableprotected void normalizeAttributes(double[] attributes)
IndependentVariableNormalizer
normalizeAttributes
in class IndependentVariableNormalizer
attributes
- Attributes to be normalizedprotected double normalizeClassVariable(double value)
IndependentVariableNormalizer
normalizeClassVariable
in class IndependentVariableNormalizer
value
- Value of class variableprotected double normalizationFunction(double variable, double mean, double stdev)
variable
- Value of variable to be normalizedmean
- Mean of this variable (from training set)stdev
- Standard deviation of this variableprotected void restoreAttributes(double[] attributes)
IndependentVariableNormalizer
restoreAttributes
in class IndependentVariableNormalizer
attributes
- Normalized attributes to be restoredprotected double restoreClassVariable(double value)
IndependentVariableNormalizer
restoreClassVariable
in class IndependentVariableNormalizer
value
- Normalized value of class variableprotected double restorationFunction(double variable, double mean, double stdev)
variable
- Value of variable to be restoredmean
- Mean of variable (from training set)stdev
- Measured standard deviation of variable