public class ZScoreNormalizer extends IndependentVariableNormalizer
Usage: *No options*
| Constructor and Description |
|---|
ZScoreNormalizer() |
| Modifier and Type | Method and Description |
|---|---|
ZScoreNormalizer |
clone() |
protected void |
computeAttributeStatistics(int attributeNumber,
double[] values)
Compute statistics required to perform normalization/restoration.
|
protected void |
computeClassStatistics(double[] values)
Compute statistics regarding the class variable.
|
protected double |
normalizationFunction(double variable,
double mean,
double stdev)
Compute the normalized value of a variable
|
protected void |
normalizeAttributes(double[] attributes)
Normalize each attribute for an entry
|
protected double |
normalizeClassVariable(double value)
Normalize a class variable
|
protected void |
prepareAttributeArrays(int NAttributes)
Prepare arrays that will hold attribute statistics.
|
java.lang.String |
printUsage()
Print out required format for options.
|
protected double |
restorationFunction(double variable,
double mean,
double stdev)
Compute the restored value a variable
|
protected void |
restoreAttributes(double[] attributes)
Restore each attribute for an entry
|
protected double |
restoreClassVariable(double value)
Restore a class variable
|
void |
setOptions(java.util.List<java.lang.Object> Options)
Set any options for this object.
|
normalizeAttributes, normalizeClassVariable, restoreAttributes, restoreClassVariable, trainOnAttributes, trainOnMeasuredClassabout, isTrained, normalize, printCommand, printDescription, restore, runCommand, setToNormalizeAttributes, setToNormalizeClass, test, train, willNormalizeAttributes, willNormalizeClasspublic ZScoreNormalizer clone()
clone in class BaseDatasetNormalizerpublic void setOptions(java.util.List<java.lang.Object> Options)
throws java.lang.Exception
OptionsOptions - Array of options as Objects - can be nulljava.lang.Exception - if problem with inputspublic java.lang.String printUsage()
Optionsprotected void prepareAttributeArrays(int NAttributes)
IndependentVariableNormalizerprepareAttributeArrays in class IndependentVariableNormalizerprotected void computeAttributeStatistics(int attributeNumber,
double[] values)
IndependentVariableNormalizercomputeAttributeStatistics in class IndependentVariableNormalizerattributeNumber - Attribute numberprotected void computeClassStatistics(double[] values)
IndependentVariableNormalizercomputeClassStatistics in class IndependentVariableNormalizervalues - Measured values of the class variableprotected void normalizeAttributes(double[] attributes)
IndependentVariableNormalizernormalizeAttributes in class IndependentVariableNormalizerattributes - Attributes to be normalizedprotected double normalizeClassVariable(double value)
IndependentVariableNormalizernormalizeClassVariable in class IndependentVariableNormalizervalue - Value of class variableprotected double normalizationFunction(double variable,
double mean,
double stdev)
variable - Value of variable to be normalizedmean - Mean of this variable (from training set)stdev - Standard deviation of this variableprotected void restoreAttributes(double[] attributes)
IndependentVariableNormalizerrestoreAttributes in class IndependentVariableNormalizerattributes - Normalized attributes to be restoredprotected double restoreClassVariable(double value)
IndependentVariableNormalizerrestoreClassVariable in class IndependentVariableNormalizervalue - Normalized value of class variableprotected double restorationFunction(double variable,
double mean,
double stdev)
variable - Value of variable to be restoredmean - Mean of variable (from training set)stdev - Measured standard deviation of variable