public class LinearCorrectedRegression extends BaseRegression
Usage: $<submodel>
 
AttributeSelector, trained, TrainingStats, validated, ValidationStats| Constructor and Description | 
|---|
| LinearCorrectedRegression() | 
| Modifier and Type | Method and Description | 
|---|---|
| BaseRegression | clone() | 
| int | getNFittingParameters()Number of fitting parameters in a model. | 
| protected java.lang.String | printModel_protected()Internal method that handles printing the model as a string. | 
| java.util.List<java.lang.String> | printModelDescriptionDetails(boolean htmlFormat)Print details of the model. | 
| java.lang.String | printUsage()Print out required format for options. | 
| void | run_protected(Dataset TrainData)Run a model without checking if stuff is trained (use carefully) | 
| void | setOptions(java.util.List<java.lang.Object> Options)Set any options for this object. | 
| void | setSubmodel(BaseModel submodel)Define the model that this class corrects. | 
| protected void | train_protected(Dataset trainData)Train a model without evaluating performance | 
doRobustRegression, getRobustRegressionQ, robustTraining, runCommand, setRobustRegressionQabout, crossValidate, crossValidate, crossValidate, done, externallyValidate, getAttributeSelector, getCitations, getFilter, getTrainTime, getValidationMethod, handleSetCommand, isTrained, isValidated, loadState, printCommand, printDescription, printModel, resetModel, run, saveCommand, saveState, setAttributeSelector, setComponent, setFilter, train, trainpublic BaseRegression clone()
clone in class BaseRegressionpublic void setOptions(java.util.List<java.lang.Object> Options)
                throws java.lang.Exception
OptionsOptions - Array of options as Objects - can be nulljava.lang.Exception - if problem with inputspublic java.lang.String printUsage()
Optionspublic void setSubmodel(BaseModel submodel) throws java.lang.Exception
submodel - Another regression modeljava.lang.Exception - If model isn't a regression modelprotected void train_protected(Dataset trainData)
BaseModeltrain_protected in class BaseModeltrainData - Training datapublic void run_protected(Dataset TrainData)
BaseModelrun_protected in class BaseModelTrainData - Training datapublic int getNFittingParameters()
AbstractRegressionModelprotected java.lang.String printModel_protected()
BaseModelprintModel_protected in class BaseModelpublic java.util.List<java.lang.String> printModelDescriptionDetails(boolean htmlFormat)
BaseModelBaseModel.printDescription(boolean).
 
 Implementation note: No not add indentation for details. That is handled
 by BaseModel.printDescription(boolean). You should also call the super 
 operation to get the Normalizer and Attribute selector settings
printModelDescriptionDetails in class BaseModelhtmlFormat - Whether to use HTML format