public class LinearCorrectedRegression extends BaseRegression
Usage: $<submodel>
AttributeSelector, trained, TrainingStats, validated, ValidationStats| Constructor and Description |
|---|
LinearCorrectedRegression() |
| Modifier and Type | Method and Description |
|---|---|
BaseRegression |
clone() |
int |
getNFittingParameters()
Number of fitting parameters in a model.
|
protected java.lang.String |
printModel_protected()
Internal method that handles printing the model as a string.
|
java.util.List<java.lang.String> |
printModelDescriptionDetails(boolean htmlFormat)
Print details of the model.
|
java.lang.String |
printUsage()
Print out required format for options.
|
void |
run_protected(Dataset TrainData)
Run a model without checking if stuff is trained (use carefully)
|
void |
setOptions(java.util.List<java.lang.Object> Options)
Set any options for this object.
|
void |
setSubmodel(BaseModel submodel)
Define the model that this class corrects.
|
protected void |
train_protected(Dataset trainData)
Train a model without evaluating performance
|
doRobustRegression, getRobustRegressionQ, robustTraining, runCommand, setRobustRegressionQabout, crossValidate, crossValidate, crossValidate, done, externallyValidate, getAttributeSelector, getCitations, getFilter, getTrainTime, getValidationMethod, handleSetCommand, isTrained, isValidated, loadState, printCommand, printDescription, printModel, resetModel, run, saveCommand, saveState, setAttributeSelector, setComponent, setFilter, train, trainpublic BaseRegression clone()
clone in class BaseRegressionpublic void setOptions(java.util.List<java.lang.Object> Options)
throws java.lang.Exception
OptionsOptions - Array of options as Objects - can be nulljava.lang.Exception - if problem with inputspublic java.lang.String printUsage()
Optionspublic void setSubmodel(BaseModel submodel) throws java.lang.Exception
submodel - Another regression modeljava.lang.Exception - If model isn't a regression modelprotected void train_protected(Dataset trainData)
BaseModeltrain_protected in class BaseModeltrainData - Training datapublic void run_protected(Dataset TrainData)
BaseModelrun_protected in class BaseModelTrainData - Training datapublic int getNFittingParameters()
AbstractRegressionModelprotected java.lang.String printModel_protected()
BaseModelprintModel_protected in class BaseModelpublic java.util.List<java.lang.String> printModelDescriptionDetails(boolean htmlFormat)
BaseModelBaseModel.printDescription(boolean).
Implementation note: No not add indentation for details. That is handled
by BaseModel.printDescription(boolean). You should also call the super
operation to get the Normalizer and Attribute selector settings
printModelDescriptionDetails in class BaseModelhtmlFormat - Whether to use HTML format