public class MetallurgicalHeuristicRegression extends BaseRegression
You can also compute correction factors using the technique demonstrated
by Meredig and
Agrawal et al., where:
ΔHmodified = a * ΔHheuristic + b
AttributeSelector, trained, TrainingStats, validated, ValidationStats| Constructor and Description |
|---|
MetallurgicalHeuristicRegression() |
| Modifier and Type | Method and Description |
|---|---|
int |
getNFittingParameters()
Number of fitting parameters in a model.
|
protected java.lang.String |
printModel_protected()
Internal method that handles printing the model as a string.
|
protected java.util.List<java.lang.String> |
printModelDescriptionDetails(boolean htmlFormat)
Print details of the model.
|
java.lang.String |
printUsage()
Print out required format for options.
|
void |
run_protected(Dataset TrainData)
Run a model without checking if stuff is trained (use carefully)
|
void |
setBinaryConvexHulls(CompositionDataset hullData)
Define binary convex hull data.
|
void |
setOptions(java.util.List<java.lang.Object> Options)
Set any options for this object.
|
void |
setUseCorrection(boolean x)
Set whether to employ correction factors
|
protected void |
train_protected(Dataset TrainData)
Train a model without evaluating performance
|
clone, doRobustRegression, getRobustRegressionQ, robustTraining, runCommand, setRobustRegressionQabout, crossValidate, crossValidate, crossValidate, done, externallyValidate, getAttributeSelector, getCitations, getFilter, getTrainTime, getValidationMethod, handleSetCommand, isTrained, isValidated, loadState, printCommand, printDescription, printModel, resetModel, run, saveCommand, saveState, setAttributeSelector, setComponent, setFilter, train, trainpublic void setOptions(java.util.List<java.lang.Object> Options)
throws java.lang.Exception
OptionsOptions - Array of options as Objects - can be nulljava.lang.Exception - if problem with inputspublic java.lang.String printUsage()
Optionspublic void setBinaryConvexHulls(CompositionDataset hullData)
This code does not currently have the capability to calculate convex hulls. Since, this class is intended to be used with data from qmpy I figured that you can just use that code's capabilities.
hullData - Dataset holding all known compounds to be used for calculating delta_epublic void setUseCorrection(boolean x)
x - Desired settingprotected void train_protected(Dataset TrainData)
BaseModeltrain_protected in class BaseModelTrainData - Training datapublic void run_protected(Dataset TrainData)
BaseModelrun_protected in class BaseModelTrainData - Training dataprotected java.lang.String printModel_protected()
BaseModelprintModel_protected in class BaseModelprotected java.util.List<java.lang.String> printModelDescriptionDetails(boolean htmlFormat)
BaseModelBaseModel.printDescription(boolean).
Implementation note: No not add indentation for details. That is handled
by BaseModel.printDescription(boolean). You should also call the super
operation to get the Normalizer and Attribute selector settings
printModelDescriptionDetails in class BaseModelhtmlFormat - Whether to use HTML formatpublic int getNFittingParameters()
AbstractRegressionModel