public class MixingRuleRegression extends BaseRegression
CompositionEntry based on the composition-weighted mean.
Only works on datasets that fulfill CompositionDataset.
Special features:
1/p = x_1/p_1 + ...).class = a + b * meanPropertyUsage: <property> [-invert] [-correct] [-fit <ElementNames>]
Implemented Print Commands:
fitted - Print fitted elemental properties (if any)
| Modifier and Type | Field and Description |
|---|---|
protected double[] |
CorrectionFactors
Coefficients used for correction factor.
|
protected java.util.List<java.lang.String> |
FittedElements
Elements to fit using least squares
|
protected double[] |
LookupTable
Lookup table for property of interest
|
protected java.lang.String |
PropertyName
Property used for weighting
|
protected boolean |
UseCorrection
Whether to apply correction factors
|
protected boolean |
UseInverse
Whether to compute harmonic mean.
|
AttributeSelector, trained, TrainingStats, validated, ValidationStats| Constructor and Description |
|---|
MixingRuleRegression() |
| Modifier and Type | Method and Description |
|---|---|
BaseRegression |
clone() |
protected void |
fitCorrectionFactors(CompositionDataset Data)
Fit correction factors to the mixing rule model.
|
protected void |
fitElementProperties(CompositionDataset Data)
Fits properties for elements specified by user.
|
int |
getNFittingParameters()
Number of fitting parameters in a model.
|
java.lang.String |
getPropertyName()
Retrieve the property used for alloy mean
|
boolean |
getUseInverse() |
java.lang.String |
printCommand(java.util.List<java.lang.String> Command)
Handles more complicated printing commands.
|
protected java.lang.String |
printModel_protected()
Internal method that handles printing the model as a string.
|
java.util.List<java.lang.String> |
printModelDescriptionDetails(boolean htmlFormat)
Print details of the model.
|
java.lang.String |
printUsage()
Print out required format for options.
|
void |
run_protected(Dataset TrainData)
Run a model without checking if stuff is trained (use carefully)
|
void |
setFittedElements(java.util.List<java.lang.String> elements)
Set which elements to fit.
|
void |
setOptions(java.util.List OptionsObj)
Set any options for this object.
|
void |
setPropertyName(java.lang.String PropertyName)
Define which property to use for alloy mean
|
void |
setUseCorrection(boolean UseCorrection)
Whether to fit a linear model to correct differences between the alloy mean
and class variable
|
void |
setUseInverse(boolean UseInverse)
Define whether to take the average of the property, or the average of the inverse
of the property.
|
protected void |
train_protected(Dataset TrainData)
Train a model without evaluating performance
|
doRobustRegression, getRobustRegressionQ, robustTraining, runCommand, setRobustRegressionQabout, crossValidate, crossValidate, crossValidate, done, externallyValidate, getAttributeSelector, getCitations, getFilter, getTrainTime, getValidationMethod, handleSetCommand, isTrained, isValidated, loadState, printDescription, printModel, resetModel, run, saveCommand, saveState, setAttributeSelector, setComponent, setFilter, train, trainprotected java.lang.String PropertyName
protected double[] LookupTable
protected boolean UseInverse
protected double[] CorrectionFactors
protected boolean UseCorrection
protected java.util.List<java.lang.String> FittedElements
public BaseRegression clone()
clone in class BaseRegressionpublic void setPropertyName(java.lang.String PropertyName)
PropertyName - Name of desired propertypublic java.lang.String getPropertyName()
public void setUseInverse(boolean UseInverse)
UseInverse - Whether to use the inverseMixingRuleRegressionpublic boolean getUseInverse()
public void setUseCorrection(boolean UseCorrection)
UseCorrection - Whether to use correctionspublic void setOptions(java.util.List OptionsObj)
throws java.lang.Exception
OptionsOptionsObj - Array of options as Objects - can be nulljava.lang.Exception - if problem with inputspublic java.lang.String printUsage()
Optionspublic void setFittedElements(java.util.List<java.lang.String> elements)
elements - Elements to be fit to minimize model error. List of element abbreviations.protected void train_protected(Dataset TrainData)
BaseModeltrain_protected in class BaseModelTrainData - Training datapublic int getNFittingParameters()
AbstractRegressionModelpublic void run_protected(Dataset TrainData)
BaseModelrun_protected in class BaseModelTrainData - Training dataprotected void fitElementProperties(CompositionDataset Data)
Data - Dataset to use for fittingprotected java.lang.String printModel_protected()
BaseModelprintModel_protected in class BaseModelpublic java.util.List<java.lang.String> printModelDescriptionDetails(boolean htmlFormat)
BaseModelBaseModel.printDescription(boolean).
Implementation note: No not add indentation for details. That is handled
by BaseModel.printDescription(boolean). You should also call the super
operation to get the Normalizer and Attribute selector settings
printModelDescriptionDetails in class BaseModelhtmlFormat - Whether to use HTML formatprotected void fitCorrectionFactors(CompositionDataset Data)
Data - Dataset to use for trainingpublic java.lang.String printCommand(java.util.List<java.lang.String> Command)
throws java.lang.Exception
PrintableprintCommand in interface PrintableprintCommand in class BaseModelCommand - Command specifying what to printjava.lang.Exception - If command not understood